Example: calculation of gradient of avg function.
matrix_1:
x1 |
x2 |
x4 |
scenario_benchmark |
2 -3 1 |
-1 6 2 |
1 -7 1.5 |
15 -1 -1 |
point_1:
component_name |
value |
x1 x2 x4 |
1 1 1 |
MATLAB code (.\Aorda\PSG\MATLAB\Examples\Functions\Func_value_gradient.m) for function calculation:
%Calculation of gradient using 'functionsensitivity':
%Define data:
H1 = [2 -1 1;-3 6 -7;1 2 1.5];
c1 = [15;-1;-1];
a = [1;1;1];
%Calculate gradient at point 'a':
point_1 = functionsensitivity('avg', [], H1, c1, [], a);
%Display result:
disp('Gradient of average function at point ''a'' using ''functionsensitivity'' = ');
disp(point_1)
%=======================================================================
%Calculation of gradient using 'mpsg_function_sensitivity':
%Create the PSG matrix 'matrix_1'(structure containing header and matrix body) and pack it to structure 'iargstruc_arr':
iargstruc_arr(1) = matrix_pack('matrix_1', H1, [], c1, []);
%Create the PSG point 'point_a'(structure containing header and matrix body) and pack it to structure 'iargstruc_arr':
iargstruc_arr(2) = point_pack('point_a', a, []);
%Calculate gradient at point 'point_a':
point_2 = mpsg_function_sensitivity('avg(matrix_1)','point_a',iargstruc_arr);
%Display result:
disp('Gradient of average function at point ''point_a'' using ''mpsg_function_sensitivity'' = ');
disp(point_2.values')
Program output:
Gradient of average function at point 'a' using 'functionsensitivity' =
0.0000
-2.3333
1.5000
Gradient of average function at point 'point_a' using 'mpsg_function_sensitivity' =
0.0000
-2.3333
1.5000