Polynomial Absolute. Sum of absolute values of components of a vector, i.e., L1 norm of a vector; Sum of  powers of absolute values of a vector, e.g., (Lp norm)^p 

 

Syntax

polynom_abs(matrix)

short call;

polynom_abs_name(matrix)

call with optional name.

 
Parameters

matrix        is a PSG matrix:

 

where the header row contains names of variables (except scenario_benchmark). Other rows contain numerical data. The scenario_benchmark column  is optional.

 

Remarks

The header row contains names of variables (except scenario_benchmark). Other rows contain numerical data.

The first numerical row can not be empty.  If the second numerical row is empty, then, by default ,. If the second numerical row is empty, then the third numerical row must be empty. If the third numerical row is empty, then, by default, .   The column “scenario_benchmark” can be skipped. If  “scenario_benchmark” column included in the matrix, only the value in this column is used, other values, , , are ignored.

 

 

Mathematical Definition

Polynomial Absolute function is calculated as follows:

,

where

is an argument of Polynomial Absolute function.

 

Example

Calculation in Run-File Environment
Calculation in MATLAB Environment

 

Case Studies with Polynomial Absolute

Optimal Hedging of CDO Book
Portfolio Optimization with Nonlinear Transaction Costs
Logistic Regression and Regularized Logistics Regression Applied to Estimating  Probabilities

 

See also

Relative EntropyCVaR Component PositiveCVaR Component NegativeCVaR Component Absolute, VaR Component PositiveVaR Component NegativeMaximum Component PositiveMaximum Component NegativeMaximum Component Absolute, Quadratic FunctionSquareroot Quadratic, Logarithms Sum