Case study Mixed Quantile Regression: Estimation of CVaR with Explanatory Factors (see Formal Problem Statement) in MATLAB Environment is solved with riskprog PSG subroutine.
Only one problem is included:
• | Problem 2 (CS.2 - CS.3): minimizing Rockafellar error function implemented with Partial Moments . |
MATLAB code for Binary Classification with Splines is in file problem_pm_mixed_percentile_regression.m.
Data are saved in files problem_pm_mixed_percentile_regression_data.mat.
Let us describe the main operations. To run case study you need to do the following main steps:
In file problem_pm_mixed_percentile_regression.m:
Load data:
load('.\problem_pm_mixed_percentile_regression_data.mat')
Define input arguments:
string = {2.875,'pm_pen',0.25,'pm_pen_g',3.9167,'pm_pen',0.25,'pm_pen_g',6,'pm_pen',0.25,'pm_pen_g',12.25,'pm_pen',0.25,'pm_pen_g'};
w = {0,0,0,0,0,0,0,0};
Optimize problem:
[xout, fval, status, output] = riskprog(string, w, H, c, [], [], [], [], Aeq, beq); |
Display solution:
disp(' ');
disp('Results: ');
Display status of optimization problem:
disp(sprintf('status of optimization problem = %s', status));
Display solving time:
disp(sprintf('solving time = %g', output.solving_time));
Display objective:
disp(sprintf('objective = %g', fval));
Display functions:
disp(sprintf('pm_pen= %g', output.frval(1)));
disp(sprintf('pm_pen_g= %g', output.frval(2)));
disp(sprintf('pm_pen= %g', output.frval(3)));
disp(sprintf('pm_pen_g= %g', output.frval(4)));
disp(sprintf('pm_pen= %g', output.frval(5)));
disp(sprintf('pm_pen_g= %g', output.frval(6)));
disp(sprintf('pm_pen= %g', output.frval(7)));
disp(sprintf('pm_pen_g= %g', output.frval(8)));
Display left hand sides of linear equality:
disp(sprintf('linear equality = %g', output.fAeqval));
Display residual of linear equality:
disp(sprintf('residual of linear equality = %g', output.rAeqval));
Display optimal point:
disp('optimal point = ');
disp(xout');
Results:
status of optimization problem = optimal
solving time = 0.04
objective = 0.0154118
pm_pen= 0.000312476
pm_pen_g= 0.00909997
pm_pen= 0.000246214
pm_pen_g= 0.00998063
pm_pen= 0.000186017
pm_pen_g= 0.0111287
pm_pen= 0.000134052
pm_pen_g= 0.012954
linear equality = 1.36609e-017
residual of linear equality = 1.36609e-017
optimal point =
0.0093 0.6195 0.4672 -0.0873 -0.0071 -0.0018 -0.0008 0.0004 0.0022