Spline_Sum Operator is a scenario function with vector output (see Extended Mathematical Definition).

 

Syntax

Intput Arguments

Output objects

Examples of Calculate Problem

 

Syntax

calculate

point: point_spline

spline_sum(matrix_param, matrix_data, matrix_knots)

short call;

spline_sum_name(matrix_param, matrix_data, matrix_knots)

call with optional name.

 

Intput Arguments

 

point_spline         point with two columns defining spline coefficients:

 

 

 

where

first row is predefined (see PSG Point);

= names of variables defining splines coefficients, = spline number, = piece number, = number of coefficient in polynomial.

 

matrix_param        is a PSG matrix with spline parameters:

       

 

where

header row contains names of factors . Other rows contain numerical data:

= degrees of polynomial function for each factor.

= numbers of pieces for each factor.

= smoothing degree for each factor.

 

matrix_data        is a Matrix of Scenarios with observations of dependent (scenario_benchmark) and independent variables:

       

 

where

header row contains names of variables (except scenario_probability, and scenario_benchmark). Other rows contain numerical data. The scenario_probability column is optional.

Spline_Sum is calculated at every observation of dependent variable .

 

matrix_knots        is a PSG matrix with predefined knots of splines:

       

 

where

header row contains names of factors. Other rows contain numerical data (knots values).

 

Remarks

matrix_knots contain (user specified) values of knots and this matrix is required (not optional);
number of knot values in one column of matrix_knots may differ from the number of knot values in another column (). In this case shorter columns must be supplemented with zeros.

 

 

Output objects

solution_status        calulated = spline are set correctly, infeasible = splines inputs are not consistent.

vector_spline_sum         vector of residuals (difference of observed and predicted spline values):

 

 

 

where

first row is predefined (see PSG Vector);

(see Extended Mathematical Definition) .

 

point_problem_calculate         initials values of coefficients of spline (coincides with input point point_spline).

 

constraint_for_smoothing_spline        maximum modulus value of the constraints and it's maximal deviation from zero (in square brackets) (see Additional constraints in Optimization problem).

 

Examples of Calculating Spline Sum

 

Consider problem of spline_sum calculation on matrix matrix_data. Coefficients of splines (point_spline) obtained by maximization of PSG function Logarithms Exponents Sum (see Examples of Optimization Problem).  

 

Problem Statement:

 

calculate

point: point_problem_logexp_of_spline

spline_sum(matrix_vars_f1, matrix_data_f1, matrix_data_f1_knots)

 

Output in  Run-File environment:

 

File "solution_problem_calculate.txt":

 

Problem: solution_status = calculated

Timing: Data_loading_time = 0.03, Preprocessing_time = 0.00, Solving_time = 0.00

Variables: optimal_point = point_problem_calculate

Objective:   = 0.000000000000

Constraint: constraint_for_smoothing_spline = -9.228173780684e-013 [9.228173780684e-013]

Function: spline_sum(matrix_vars_f1, matrix_data_f1, matrix_data_f1_knots) = vector_spline_sum

 

Note

solution_status = calculated if input spline coefficients satisfies Additional constraints in Optimization problem, otherwise solution_status = infeasible
Objective equals 0 if input spline coefficients satisfies Additional constraints in Optimization problem.

 

File "point_problem_calculate.txt":

 

Component_name        Value

f1_1_0        5.115949156682e-001

f1_1_1        1.363516222718e+000

f1_1_2        8.496803299671e-001

f1_1_3        1.593553645899e-001

f1_2_0        -1.796809664083e-001

f1_2_1        -2.682444790951e-001

f1_2_2        -4.342465155557e-001

f1_2_3        -1.773909370834e-001

f1_3_0        -1.774649056175e-001

f1_3_1        -2.220196383596e-001

f1_3_2        -1.128449983675e-001

f1_3_3        5.675111084198e-001

f1_4_0        -7.238952502380e-002

f1_4_1        -9.180786847385e-001

f1_4_2        1.424141094563e+000

f1_4_3        -5.637752204972e-001

f1_5_0        -3.762511948285e+000

f1_5_1        7.294872709909e+000

f1_5_2        -4.668933233238e+000

f1_5_3        9.430137919686e-001

 

Note. This point coincides with input point point_problem_logexp_of_spline.

 

File "vector_spline_sum.txt":

 

     Value

1.141854524163e+000

2.797490076146e-001

1.133451735849e+000

1.372389025502e-001

1.149555961273e+000

1.644250986223e-001

2.484441485041e-001

...